![]() | A Soviet MiG-25 interceptor aircraft armed with four AA-6 Acrid air-to-air missiles. (Via Wikimedia Commons). |
![]() | (Via Google Patents). |
Left, scanning electron microscope image of a nanodiamond transistor. Right, detail of the device, showing the nanodiamond field emitter cantilevered above the insulating silicon dioxide surface. (Images, Davidson Lab, Vanderbilt University). [3]
The diamond triodes can be used at high temperatures, possibly to about 500°C, and they should function at near liquid nitrogen temperatures. It takes a little trickery to make transistors radiation resistant, but the diamond triodes are inherently radiation resistant. Said lead author Davidson,
"When I read about the problems at the Fukushima power plant after the Japanese tsunami, I realized that nanodiamond circuits would be perfect for failsafe circuitry in nuclear reactors... It wouldn't be affected by high radiation levels or the high temperatures created by the explosions."[3]Davidson's diamond triode research was supported by the U.S. Army.[3]